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Abstract The three dimensional chemostat with nth and mth order polynomial
yields, instead of the particular one such as A + BS, A + BS2, A + BS3, A + BS4,
A + BS2 + CS3 and A + BSn , is proposed. The existence of limit cycles in the two-
dimensional stable manifold, the Hopf bifurcation and the stability of the periodic
solution created by the bifurcation are proved.
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1 Introduction

Bioreactors often serve as laboratory models that are used to manufacture products
by microorganisms [7,15]. In most of the bioreactor models, the yield coefficients
are assumed to be constants. However, this assumption failed to explain the oscilla-
tory behavior in the culture vessel observed in the experiments (see [2,14]). Some
authors suggested that the stoichiometric yield coefficient to be a function of substrate
concentration and such hypothesis was analyzed in a series of theoretical studies in
chemical engineering literature [1,4,5]. The studies showed that if the yield coeffi-
cient increases non-linearly with substrate concentration, then in a suitable parameter
range, the stable rest state may undergo a Hopf bifurcation and have a limit cycle.
The yield coefficient depends on the substrate concentration is now well established
in experimental literature (see, for instance [2,6,8–14]).
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In [2,12,14] the modeling approach developed in [1,4,5] has been modified and
the yield coefficients are assumed to be a function of the substrate concentration. The
properties of the equilibrium points, and the existence of limit cycles have been dis-
cussed. A three dimensional chemostat with two microorganisms which are both with
linear yields was studied by Song and Li [16]. In the model the functional reaction
functions were of the Monod type, and the yield coefficients were assumed linear
functions of the concentration of nutrient. In a recent paper [13], the authors assumed
that one of the two yield coefficients was a simple quadratic function and discussed the
stability of the solution. We are going to generalize the yield functions in [12,13,16]
to the nth and mth order polynomials and extend the functional reactions from the
Monod type to general nondecreasing functions, and we study the equilibrium points,
the globally asymptotically stability of the solutions, the existence of limit cycles in
the two-dimensional stable manifold, the Hopf bifurcation, and the stability of the
periodic solution created by the bifurcation for the system.

A polynomial with degree bigger than 1 is one of the simplest nonlinear functions
in mathematics. Based on the strong support from the lab experiments, several authors
have used some simple polynomials with degrees 2, 3, 4, or even n as the yield func-
tions in the literature [2,12–14,16]. For example, Pilyugin and Waltman provided a
numeric example with the yields of the first microorganism δ1(S) = 1 + 50S3 and the
second δ2(S) = 120, and obtained multiple limit cycles in computer simulating (see
Fig. 1, and page 161, Fig. 4 [14]). These limit cycles are obtained for different values
of the bifurcation parameters.

Fig. 1 The Existence of more limit cycles in the chemostat with the cubic yield δ1(S) = 1 + 50S3 and
constant yield δ2 = 120
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It is easy to see that the above numerical example is a special case of our system
(2) with A0 = 1, A3 = 50, B0 = 120, and Ai = 0, i = 1, 2, 4, . . . , n, Bi = 0, i =
1, 2, . . . , m. Another example with δ1(S) = A0 + An Sn, and δ2(S) = const. can be
found in the paper of Arino et al. [2]. For particular, some numerical simulation with
δ1(S) = 1 + c1S4, c1 varies and δ2(S) = 120 is given in [2]. Therefore, in this paper,
we propose a general mode with the nth and mth order polynomial yields, instead of
the particular ones such as A + BS, A + BS2, A + BS3, A + BS4, A + BS2 + CS3 and
A + BSn . This generalization is supported strongly by the literature [2,12–14,16], and
a thorough mathematical analysis for the model is, of course, interesting.

2 The model

Let S(t) denote the concentration of nutrient in the vessel at time t, x(t) and y(t), the
concentration of the two microorganisms. The model of two microorganisms takes
the form (see [2,12,14], for instance):

d S

dt
= (S0 − S)Q − 1

δ1
g1(S)x − 1

δ2
g2(S)y,

dx

dt
= x (g1(S) − Q) ,

dy

dt
= y(g2(S) − Q),

S(0) = S0 > 0, x(0), y(0) ≥ 0, (1)

where S0 is the input concentration of nutrient, Q is the washout rate, gi (S), i = 1, 2
are the growth rates of microorganisms, and 1

δi
, i = 1, 2, are the yield coefficients,

in which δi = δi (S), i = 1, 2, are functions of S. All these parameters are positive.
Usually, gi (S) takes the form of mi S

ki +S , i = 1, 2.

System (1) with the yield coefficients δi (S) = Ai + S, gi (S) = mi S
ki +S , i = 1, 2, and

δ1(S) = A + BS2, δ2(S) = const., gi (S) = mi S
ki +S , i = 1, 2 was studied in [13,16],

and with δ1(S) = 1 + 50S3, δ2(S) = 120 was studied in [14], and δ1(S) = 1 +
50S4, δ2(S) = 120 in [2], respectively. Here we investigate system (1) with δ1(S) =
A0+ A1S+· · ·+ An Sn, δ2(S) = B0+ B1S+· · ·+ Bm Sm, and gi (S), i = 1, 2, the two
general functions with the assumptions that gi (0) = 0, g′

i > 0, i = 1, 2. For the yield
coefficients, we assume that Ai ≥ 0, i = 0, 1, 2, . . . , n, B j ≥ 0, j = 0, 1, 2, . . . , m
with at least, one of Ai and one of B j positive. This model is for the case when the
production of the microbial biomasses is more sensitive to the concentration of the
nutrient in the vessel than the cases in [12,13,16,19].

Performing the standard scaling for the chemostat, let

S̄ = S

S0
, x̄ = x

S0
, ȳ = y

S0
, τ = Qt, ḡi (S̄) = gi (S̄S0)

Q
, i = 1, 2,

and then drop the bars and replace τ with t , system (1) becomes
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d S

dt
= 1 − S − x

A0 + A1S0S + · · · + An Sn
0 Sn

g1(S)

− y

B0 + B1S0S + · · · + Bm Sm
0 Sm

g2(S),

dx

dt
= x (g1(S) − 1) ,

dy

dt
= y(g2(S) − 1). (2)

Here, the parameters have been scaled by the operating environment of the chemo-
stat, which are determined by S0 and Q. The variables are non-dimensional and the
discussion is in

{(S, x, y) | 0 ≤ S ≤ 1, x ≥ 0, y ≥ 0 } .

Due to the biological background, it is assumed that all these coefficients Ai , i =
0, 1, . . . , n and Bi , i = 0, 1, . . . , m are non-negative but not all zeros.

Let λi = g−1
i (1), i = 1, 2. We have [3],

Lemma 1 For system (2),

(i) if g1(S) < 1, then
dx

dt
< 0, and lim

t→∞ x(t) = 0;

(i i) if g2(S) < 1, then
dy

dt
< 0, and lim

t→∞ y(t) = 0.

(Note that gi (S) < 1 on 0 ≤ S ≤ 1 implies that gi (1) < gi (λi ), and then λi > 1.)

Proof Let x̂(t) be the solution of

dx̂(t)

dt
= (g1(1) − 1)x̂(t),

x̂(t0) = x(t0).

It follows that 0 < x(t) ≤ x̂(t); then limt→∞ x̂(t) = limt→∞ x(t0)e(g(1)−1)t = 0,
since g1(1) − 1 < 0. Therefore, limt→∞ x(t) = 0. Similarly, limt→∞ y(t) = 0.

In the case of λ1 = 1, consider the system

dx̂(t)

dt
= (g1(S) − 1)x̂(t),

x̂(t0) = x(t0).

The same argument as above can show that limt→∞ x(t) = 0 on 0 ≤ S < 1. By the
continuity of the solution on the variable S, we still have limt→∞ x(t) = 0. Therefore,
in order to avoid the microorganisms vanishing, we need to assume 0 < λi < 1, i =
1, 2. ��
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System (2) has the following three possible equilibrium points:

E0(1, 0, 0), E1(λ1, (1 − λ1)(A0 + A1S0λ1 + · · · + An Sn
0 λn

1), 0) if 0 < λ1 < 1, and

E2(λ2, 0, (1 − λ2)(B0 + B1S0λ2 + · · · + Bm Sm
0 λm

2 )) if 0 < λ2 < 1.

Denote

Q1 ≡ (A1 + A2S0λ1 + · · · + An Sn−1
0 λn−1

1 )S0,

Q2 ≡ (B1 + B2S0λ2 + · · · + Bm Sm−1
0 λm−1

2 )S0,

and

R1 =
1 − 2λ1 + λ1(1 − λ1)

(
A2 S0+2A3 S2

0λ1+···+(n−1)An Sn−1
0 λn−2

1

A1+A2 S0λ1+···+An Sn−1
0 λn−1

1
− g′

1(λ1)

)

1 + (1 − λ1) g′
1(λ1)

,

R2 =
1 − 2λ2 + λ2(1 − λ2)

(
B2 S0+2B3 S2

2λ2+···+(m−1)Bm Sm−1
0 λm−2

2

B1+B2 S0λ2+···+Bm Sm−1
0 λm−1

2
− g′

2(λ2)

)

1 + (1 − λ2) g′
2(λ2)

.

Our main results are in the next section.

3 Main theorems and proofs

For the property of the equilibrium points, we have

Theorem 1 (i) E0 is always an equilibrium point. It is globally asymptotically stable
if λi > 1, or gi (1) < 1, i = 1, 2. It is unstable if either inequality is reversed.

(ii) E1 exists if and only if 0 < λ1 < 1, or g1(1) > 1. If it exists, it is possible to have
a two-dimensional stable manifold (the plane x = 0), and is locally asymptotically
stable if A0

Q1
> R1 and λ1 < λ2, and unstable if either inequality is reversed.

(iii) E2 exists if and only if 0 < λ2 < 1, or g2(1) > 1. If it exists, it is possible
to have a two-dimensional stable manifold (the plane y = 0), and is locally stable if
B0
Q2

> R2 and λ1 > λ2, and unstable if either inequality is reversed.

Proof The Jacobian matrix of (2) takes the form

J (S, x, y) =
⎛
⎝ j11 j12 j13

j21 j22 j23
j31 j32 j33

⎞
⎠, (3)

where

j11 = −1 − x

(A0 + A1S0S + · · · + An Sn
0 Sn)2

×(g′
1(S)(A0 + A1S0S + · · · + An Sn

0 Sn)
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− g1(S)(A1S0 + 2A2S2
0 S + · · · + n An Sn

0 Sn−1))

− y

(B0 + B1S0S + · · · + Bm Sm
0 Sm)2 (g′

2(S)

×(B0 + B1S0S + · · · + Bm Sm
0 Sm)

− g2(S)(B1S0 + 2B2S2
0 S + · · · + m Bm Sm

0 Sm−1)),

j12 = − g1(S)

A0 + A1S0S + · · · + An Sn
0 Sn

,

j13 = − g2(S)

B0 + B1S0S + · · · + Bm Sm
0 Sm

,

j21 = xg′
1(S), j22 = g1(S) − 1, j23 = j32 = 0,

j31 = yg′
2(S), j33 = g2(S) − 1.

The corresponding characteristic equation for E1 is

(r − (g2(λ1) − 1))
(

r2 + b1r + c1

)
= 0, (4)

where

b1 = 1 + (1 − λ1)

(
g′

1(λ1) − A1S0 + 2A2S2
0λ1 + · · · + n An Sn

0 λn−1
1

A0 + A1S0λ1 + · · · + An Sn
0 λn

1

)

c1 = (1 − λ1) g′
1(λ1) > 0.

If b1 > 0, or if A0
Q1

> R1 and λ1 < λ2, then the three roots of (4) are either negative or
with negative real parts. Hence E1 is locally asymptotically stable, and it is unstable
if either of the inequality is reversed. Obviously, the plane y = 0 is a stable manifold
of (2).

Similarly, we can prove the result (iii) for E2.
When λi > 1, i = 1, 2, then E1 and E2 do not exist and E0 is the only equilibrium,

the global statement of (i) can be established by comparison theorems using (2) and
the flow on each of the invariant sets x = 0 and y = 0. The same comparison argument
and the Butler–MeGehee Theorem (see Smith and Waltman [15], p. 12) shows that if
only one of E1 and E2 exists, that equilibrium point is globally asymptotically stable.
The proof of Theorem 1 is completed. ��
Theorem 2 System (2) has a positive invariant set � which takes the form:

{ (S, x, y)| 0≤S≤M − x − y, 0≤x≤ (
A0+A1S0λ1+ · · ·+An Sn

0 λn
1

)
(1 − λ1)+ε00≤y≤ (

B0+B1S0λ2+ · · · +Bm Sm
0 λm

2

)
(1 − λ2) +ε0, 0<M<+∞, ε0>0, const.} .

Proof We are going to show that any trajectory initiated at (S, x, y) in the open positive
octant will enter into � as t → +∞. In fact, by the first equation of (2), any trajectory
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starting in { (S, x, y)| S < 0, x > 0, y > 0} will cross the face S = 0 into the positive
octant in R3. But the reverse is not true.

Consider the face π = S + x + y − M = 0 (0 < M < +∞), and

dπ

dt

∣∣∣∣
π=0

=
(

d S

dt
+ dx

dt
+ dy

dt

)∣∣∣∣
S=M−x−y

= 1 − M − x

(
1

A0 + A1S0(L − x − y) + · · · + An Sn
0 (M − x − y)n

− 1

)

×g1(M − x − y)

−y

(
1

B0 + B1S0(M − x − y) + · · · + Bm Sm
0 (M − x − y)m

− 1

)

×g2(M − x − y).

Since x, y, g1, g2 are bounded, and Ai , B j , i = 0, 1, . . . , n, j = 0, 1, . . . , m are
positive, dπ

dt

∣∣
π=0 < 0 for sufficiently large M . Therefore, the trajectory will cross the

face π = 0 into �.
Moreover, d S

dt

∣∣
S=0 = 1 > 0, and both the faces x = 0 and y = 0 are the solutions

of (2). Thus, � is positively invariant under (2). ��
In the case when one of the microorganisms is going to vanish, some nonlinear

oscillatory phenomena for the microorganism and the nutrient occur. In other words,
in the corresponding stable manifold, a limit cycle exists. We recall the following
result [11].

Consider the system

dx

dt
= x (g(y) − 1) ,

dy

dt
= 1 − y − g(y)

F(y)
x, (5)

where g(0) = 0, g′(y) ≥ 0, F(y) > 0, F ′(y) ≥ 0.

In {(x, y)|0 ≤ x ≤ 1, y ≥ 0}, system (5) has two equilibrium points (0, 1), and
(x∗, y∗) if g(1) > 1, where

x∗ = (1 − y∗)F(y∗), y∗ = g−1(1).

It is easy to see that that(0, 1) is globally asymptotically stable if g(1) < 1, a saddle
if g(1) > 1.

Denote

p = 1 + x∗ d

dy

( g

F

) ∣∣y=y∗ . (6)

The following theorem was established [11]. ��

123



206 J Math Chem (2009) 46:199–213

Theorem H Assume g(1) > 1. If p > 0, then (x∗, y∗) is stable; if p < 0, it is unstable
and there exists at least one limit cycle in (5) surrounding the equilibrium(x∗, y∗).

On the face y = 0, the two dimensional stable manifold, system (2) is reduced to

d S

dt
= 1 − S − x

1

A0 + A1S0S + · · · + An Sn
0 Sn

g1(S)

dx

dt
= x (g1(S) − 1) , (7)

which is a special case of (5) if let y = S, g(y) = g(S), F(y) = A0 + A1S0S + · · ·+
An Sn

0 Sn . By Theorem H, it follows

Theorem 3 If 0 < λ1 < 1, system (7) has two equilibrium points: M1(1, 0), and
M2(λ1, (1 − λ1)(A0 + A1S0S + · · · + An Sn

0 Sn)). M1 is a saddle, and M2 is stable if
A0
Q1

> R1, and unstable if A0
Q1

< R1. In the case when M2 is unstable, there is at least
one limit cycle of (7) surrounding M2 on the face y = 0.

Similarly, if x = 0,then the projection of (2) on the stable manifold x = 0, has two
equilibrium points: N (1, 0) and N2(λ2, (1 − λ2)(B0 + B1S0λ2 + · · · + Bm Sm

0 λm
2 )).

We have

Theorem 4 Assume 0 < λ2 < 1. If B0
Q2

> R2, then is stable; if B0
Q2

< R2, then
N2 is unstable and there exists at least one limit cycle on the stable manifold x = 0
surrounding N2.

Regarding the bifurcation on the two-dimensional stable manifolds, the following
theorems are valid.

Theorem 5 System (7) undergoes a Hopf bifurcation on the face y = 0 when A0
Q1

=
R1.

Proof Let J (M2) be the Jacobian at M2. The corresponding characteristic equation is

r2 + b1r + c1 = 0. (8)

Let A0
Q1

= µ. Denote b1, the coefficient of r in the above equation, as tr J
(

A0
Q1

)
, or

tr J (µ), where

tr J (µ) = 1 + (1 − λ1)

⎛
⎜⎝g′

1(λ1) −
1 + A2 S0+2A3 S2

0λ1+···+(n−1)An Sn−1
0 λn−2

1

A1+A2 S0λ1+···+An Sn−1
0 λn−1

1

µ + λ1

⎞
⎟⎠ . (9)

Since

d

dµ
tr J (µ)

∣∣
µ=R1 = (1 − λ1)

1 + A2 S0+2A3 S2
0λ1+···+(n−1)An Sn−1

0 λn−2
1

A1+A2 S0λ1+···+An Sn−1
0 λn−1

1

(R1 + λ1)
2 > 0,
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tr J (µ) is increasing at µ = R1, and the phase structure of M2 changes from unstable
to stable at R1 as the parameter µ increases. So (7) undergoes a Hope bifurcation at
A0
Q1

= R1 by the definition Zhang [18]. ��
Theorem 6 If x = 0, then for the equilibrium point N2, the projecting system of (2)
on the stable manifold x = 0 undergoes a Hopf bifurcation at B0

Q2
= R2.

The stability of the periodic solution created by the bifurcation can be shown as
follows. For the simplicity, we assume that the functional responses take the special
form gi (S) = mi S

ki +S , i = 1, 2 in the proof.

Theorem 7 The periodic solution of system (7) created by the bifurcation at A0
Q1

= R1

is stable when 0 < A0
Q1

− R1 
 1, and g3 < 0 (where g3 is defined as in (14)).

Proof We first make the following transformation:

S̄ = S − λ1, x̄ = x − (1 − λ1)(A0 + A1S0λ1 + · · · + An Sn
0 λn

1).

Let

dt = (A0 + A1S0(S̄ + λ1) + · · · + An Sn
0 (S̄ + λ1)

n)(k1 + S̄ + λ1)dτ,

and denote a = A0 + A1S0λ1 + · · · + An Sn
0 λn

1, b = k1 + λ1, d = 1 − λ1, then drop
the bars above the variables, system (7) now takes the form:

d S

dt
= [a(d − b) + bd(A1S0 + C1

2 A2S2
0λ1 + · · · + Cn−1

n An Sn
0 λn−1

1 ) − adm1]S
−m1λ1x − m1x S

+[(d − b)(A1S0 + C1
2 A2S2

0λ1 + · · · + Cn−1
n An Sn

0 λn−1
1 )

+bd(A2S2
0 + C1

3 A3S3
0λ1 + · · · + Cn−2

n An Sn
0 λn−2

1 ) − a]S2

+[(d − b)(A2S2
0 + C1

3 A3S3
0λ1 + · · · + Cn−2

n An Sn
0 λn−2

1 )

+bd(A3S3
0 + C1

4 A4S4
0λ1 + · · · + Cn−3

n An Sn
0 λn−3

1 )

−(A1S0 + C1
2 A2S2

0λ1 + · · · + Cn−1
n An]Sn

0 λn−2
1 )]S3 + · · ·

+[(d − b)(An−1Sn−1
0 + C1

n An Sn
0 λ1) + bd An Sn

0

−(An−2Sn−2
0 + C1

n−1 An−1Sn−1
0 λ1 + C2

n An Sn
0 λ2

1)]Sn

+[(d − b)An Sn
0 − (An−1Sn−1

0 + C1
n An Sn

0 λ1)]Sn+1 − An Sn
0 Sn+2,

dx

dt
= (m1 − 1)(x S + ad S)(A0 + A1S0(S + λ1) + A2S2

0 (S + λ1)
2 + · · ·

+An Sn
0 (S + λ1)

n)

= (m1 − 1)(x S + ad S)(a + A1S0 + C1
2 A2S2

0λ1 + · · · + Cn−1
n An Sn

0 λn−1
1 )S

+(A2S2
0 + C1

3 A3S3
0λ1 + · · · + Cn−2

n An Sn
0 λn−2

1 )S2

+(A3S3
0 + C1

4 A4S4
0λ1 + · · · + Cn−3

n An Sn
0 λn−3

1 )S3 + · · ·
+(An−1Sn−1

0 + C1
n An Sn

0 λ1)Sn−1 + An Sn
0 Sn .
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Note that, here Ck
n = n!

k!(n−k)! , k = 0, 1, 2, . . . , n, the combination coefficients.
Denote

Ā1 = A1S0 + C1
2 A2S2

0λ1 + C2
3 A3S3

0λ2
1 + · · · + Cn−1

n An Sn
0 λn−1

1 ,

Ā2 = A2S2
0 + C1

3 A3S3
0λ1 + C2

4 A4S4
0λ2

1 + · · · + Cn−2
n An Sn

0 λn−2
1 ,

Ā3 = A3S3
0 + C1

4 A4S4
0λ1 + C2

5 A5S5
0λ2

1 + · · · + Cn−3
n An Sn

0 λn−3
1 ,

· · ·
Ān−1 = An−1Sn−1

0 + C1
n An Sn

0 λ1,

Ān = An Sn
0 .

Write the above system in Ai , i = 1, 2, . . . , n,

d S

dt
= ((d − b)a + bd Ā1 − adm1)S − m1λ1x − m1x S

+((d − b) Ā1 + bd Ā2 − a)S2 + ((d − b) Ā2 + bd Ā3 − Ā1)S3 + · · ·
+((d − b) Ān−1 + bd Ān − Ān−2)Sn + ((d − b) Ān − Ān−1)Sn+1 − Ān Sn+2,

dx

dt
= (m1 − 1)(a(ad + x)S + Ā1(x + ad)S2 + · · · + Ān(x + ad)Sn+1). (10)

Note that the condition A0
Q1

= R1 is now equivalent to a(d − b)+ bd Ā1 − adm1 = 0.

Then, system (10) is equivalent to

d S

dt
= − m1k1

m1 − 1
x − m1x S + [(d − b) Ā1 + bd Ā2 − a)S2 + · · ·

+((d − b) Ān − Ān−1)Sn+1 − Ān Sn+2, (11)
dx

dt
= (m1 − 1)a2d S + (m1 − 1)(ax S + Ā1(x + ad)S2

+ Ā2(x + ad)S3 + · · · + Ān(x + ad)Sn+1).

By another transformation: S =
√

m1k1

a(m1−1))
√

d
S̄, x = x̄, t = 1

a
√

dm1k1
t̄ , and drop the

bars, system (11) becomes

d S

dt
= −x + a1S2 − a2x S + a3S3 + a4S4 + · · · + an+1Sn+1 − an+2Sn+2,

dx

dt
= S + b1x S + b2x S2 + b̄2S2 + b3x S3 + b̄3S3 + · · · + bn x Sn + b̄n Sn (12)

+bn+1x Sn+1 + b̄n+1Sn+1,

where,

a1 = (d − b) Ā1 + bd Ā2 − a

(m1 − 1)a2d
,
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a2 = m1

a
√

dk1m1
,

a3 = ((d − b) Ā2 + bd Ā3 − Ā1)
√

m1k1

(m1 − 1)2a3d
√

d
, . . . ,

an+1 = ((d − b) Ān − Ān−1)
(√

m1k1
)n−1

(m1 − 1)nan+1
(√

d
)n+1 ,

an+2 = Ān
(√

m1k1
)n

(m1 − 1)n+1an+2
(√

d
)n+2 ;

b1 = 1

ad
, b2 = Ā1

√
m1k1

(m1 − 1)a3d
√

d
, b̄2 = Ā1

√
m1k1

(m1 − 1)a2
√

d
,

· · ·
bn+1 = Ān

(√
m1k1

)n

(m1 − 1)nan+2
(√

d
)n+2 , b̄n+1 = Ān

(√
m1k1

)n

(m1 − 1)nan+1
(√

d
)n .

Let S = r cos θ, x = r sin θ . Then, system (12) becomes

dr

dt
= cos θ(a1S2 − a2x S + a3S3 + a4S4 + · · · + an+1Sn+1 − an+2Sn+2)

+ sin θ(b1x S+b2x S2+b̄2S2+b3x S3+b̄3S3+ · · · +bn+1x Sn+1+b̄n+1Sn+1),

dθ

dt
= 1 − 1

r
[sin θ(a1S2 − a2x S + a3S3 + a4S4 + · · · + an+1Sn+1 − an+2Sn+2)

− cos θ(b1x S + b2x S2 + b̄2S2 + · · · + bn+1x Sn+12 + b̄n+1Sn+1)].

Substituting by S = r cos θ, x = r sin θ , and cancel the time variable t . If expend dr
dθ

as a power series in r , we have

dr

dθ
= r2[a1 cos3 θ + (b̄2 − a2) sin θ cos2 θ + b1 sin2 θ cos θ ]

+r3{[a3 cos4 θ + b̄3 cos3 θ sin θ + b̄2 cos2 θ sin θ ] − [a1 cos3 θ (13)

+(b̄2 − a2) cos2 θ sin θ + b1 cos θ sin2 θ)] [b̄2 cos3 θ

+(b1 − a1) cos2 θ sin θ + a2 cos θ sin2 θ ]} + · · · .

Assume that the solution of (13) takes the form r = c + r2(θ)c2 + r3(θ)c3 + · · · ,
with r1(0) = r2(0) = r3(0) = · · · = 0. Then substituting this solution into (13) and
comparing the coefficients of c2, one has

dr2

dθ
= a1 cos3 θ + (b̄2 − a2) cos2 θ sin θ + b1 sin2 θ cos θ.

Integrating the above equation in [0, θ ] will result in
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r2(θ) = a1 sin θ + 1

3
(b1 − a1) sin3 θ − b̄2 − a2

3
cos3 θ + b̄2 − a2

3
.

It is easy to see that r2(θ) is a periodic function with the period 2π . Compare the
coefficients of c3, we have

dr3

dθ
= 2r2[a1 cos3 θ − (b̄2 − a2) sin θ cos2 θ + b1 sin2 θ cos θ ] + {a3 cos4 θ

+b̄3 cos3 θ sin θ + b2 cos2 θ sin2 θ − [a1 cos3 θ + (b̄2 − a2) cos2 θ sin θ

+b1 cos θ sin2 θ ] [b̄2 cos3 θ + (b1 − a1) cos2 θ sin θ + a2 cos θ sin2 θ ]}.

Let r3(θ) = g3θ + f3(θ), then

g3 = 1

2π

∫ 2π

0

[(
−4

3
a1b̄2 + 4

3
a1a2 − 2

3
b1b2 − 1

3
a2b1 + b2

)
cos2 θ

+
(

5

3
a1b̄2 − 8

3
a1a2 − 4

3
b1b̄2 + 7

3
a2b1 + a3 − b2

)
cos4 θ

+ (−2a1b̄2 + 2b1b̄2 + 2a1a2 − 2a2b1) cos6 θ

]
dθ,

that is,

g3 = −2

3
a1b̄2 + 7

24
a1a2 − 5

24
b1b̄2 + 1

12
a2b1 + 1

8
b2 + 3

8
a3. (14)

f3(θ)

=
∫ θ

0

[
(2a2

1 + b̄3) sin θ cos3 θ +
(

a2
2 − b2

1 − 2

3
a2

1 + 2

3
a1b̄2 − a2b̄2 + a1b1

)

× cos3 θ sin3 θ +
(

a2
1 − 1

3
b̄2

2 + 2

3
a2

2 − 1

3
b̄2a2 − a1b2

)
cos5 θ sin θ

+ 2a1b1 sin3 θ cos θ + 2

3
a1(b̄2 − a2) cos3 θ

−2

3
(b̄2 − a2)

2 cos2 θ sin θ + 2

3
(b̄2 − a2)b1 sin2 θ cos θ

]
dθ.

Obviously, f3(θ) is a periodic function with the period 2π . If g3 < 0, by the criteria
of the successor function, M2 is a first order stable focus, and if A0

Q1
< R1, M2 is

unstable, by the method of Friedrich (see [18]), the periodic solution surrounding M2
is stable. We thus complete the proof of Theorem 6. ��
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4 Conclusion

We have showed it analytically that the limit cycle created by the bifurcation in the
stable manifold S − x face of system (2) is stable under certain conditions. This
work is based on many numerical simulations [2,14]. As an example, Fig. 2, which
is from Pilyugin and Waltman [14], Fig. 2, p. 159, shows that for some particular
system parameters, system (7) can have two limit cycles. As shown in the figure, of
the two periodic trajectories shown here, the outer is asymptotically stable and the
inner is unstable. The asymptotically stable equilibrium E1 or M2 as in Theorem 3
(not shown) is located inside the inner cycle.

We would like to consider another example,

d S

dt
= 1 − S − x

1

1 + c1S3

2S

0.7 + S
− y

1

120

m2S

6.5 + S
,

dx

dt
= x

(
2S

0.7 + S
− 1

)
, (15)

dy

dt
= y

(
m2S

6.5 + S
− 1

)
,

S(0) = S0 ≥ 0, x(0), y(0) ≥ 0.

As shown in Fig. 1, the five stable limit cycles in the positive orthant correspond to
m2 = 9.85+0.05k, k = 1, 2, . . . , 5. They were computed as numerical simulations of
(15) with initial conditions: S(0) = 0.4, x(0) = 2.0, y(0) = 0.01 for 0 ≤ t ≤ 5000.
The figure shows the parametric plots of these solutions for 4500 ≤ t ≤ 5000. The
limit cycle in the S − x plane is the trajectory of (2). It was computed by setting
S(0) = 0.4, x(0) = 2.0, y(0) = 0.

These numerical simulations indicate that a further study of the system proposed in
this paper is useful in describing the microbial growth dynamics in chemostat when

Fig. 2 Two limit cycles in the stable manifold S − x face of system (2) (see [14], Fig. 2, p. 159)
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the yield depends on the limiting nutrient concentration. For some particular choice
of the system parameters, the variable yield models exhibit sustained oscillations and
multiple limit cycles exist. The variable yield model conforms to the experimental data
on microbial growth in continuous cultures that exhibit sustained oscillations (see [14]
and its references).

Because many authors have already suggested some particular polynomials as the
yield coefficients (see, for example [2–5,12–14,16,19]), it is of interests to use com-
plete nth and mth order polynomials in analyzing the dynamical behavior of the chemo-
stat. That helps to understand how the yield depends on the substrate and to incorporate
the term correctly in the model.

Note that the conditions of the theorems are in terms of the system functions and
parameters. This might be useful in reactor technology. The dynamical system on the
stable manifold y = 0 (i.e. the S − x face) is important when the microorganism x is
a better competitor [10].

The existence of limit cycles in the three-dimensional system (2) has not been proved
directly in the three-dimensional space, but in the two-dimensional stable manifold.
However, the limit cycles on the face y = 0 are still the ones of the space. In general,
proving the existence of periodic solutions of the n-dimensional differential system
is always of interest in both theory and applications. This is because the situation of
n ≥ 3 is much complicated than the one of n = 2 and the powerful tools in the plane
system like the Poincare-Bendixson theorem cannot be applied directly in the space.
So any results regarding the 3-D limit cycles are welcome in this area.

Finally, we would like to mention, suggested by one of the referee, that a generaliza-
tion of the Poincare-Bendixson theorem for higher dimensional cases with chemical
application can be found in the last reference [17].

Acknowledgements The authors would like to acknowledge the anonymous referees for their helpful
comments.
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